Often overlooked when evaluating or calculating pump performance is the role of discharge hose. If you are using hose rather than pipe, the type of hose selected can and does have a major impact on pump output and is a common reason for pump system under-performance. When choosing a type of discharge hose, you should consider more than just the price point.

So when asking what’s best for my application, consider that the most common options in hose (listed from lowest cost to highest) are lay flat, rubber, reinforced rubber and wire reinforced vinyl. These options, as with many things, hold true to the old saying, “you get what you pay for.”

Specifically, the lower cost lay flat and non-reinforced rubber hose create additional head pressure as the pumps must work against the actual head and also work to keep the discharge hose expanded while both starting and pumping. While not good for all jobs, this type of hose can be effective for lower head, short horizontal run-out applications, where there is not a lot of total head to overcome. The other thing to consider when thinking about lay flat hose is the question of durability. It is easily the most sensitive when it comes to abrasion and puncture, and in severe conditions, lay flat can quickly turn in to a sprinkler hose. Non-reinforced rubber is much more durable than lay flat. However, with any non-reinforced hose, kinking and the resulting discharge line obstruction can often occur.

As I am sure you figured out by now, either type of reinforced hose will eliminate the false head created by the collapsing hoses and as a result the impact on system performance will be minimized.. So when choosing between the reinforced rubber and wire reinforced vinyl, you should think about things like flexibility and weight. The vinyl product is almost always lighter with a better bend radius, but can also be a bit pricier than the reinforced rubber. The rubber on the other hand typically is more abrasion and puncture resistant.
To sum up, the same discharge hose is not right for every job. Consider all of the job conditions and choose the hose which create the best mix of optimal system performance, durability and cost minimization.

In this world where we all strive to save energy and develop products that will do just that we also have to be aware of the trade offs that can come with it. In the pump world it means making pumps that can achieve the highest efficiency and use less power to drive them. An example would be a water pump running 24 hours a day in a cooling system at a plant. The difference in the cost of electric power consumed by a pump that is 50% efficient versus one that is 75% efficient could be huge and over time the more efficient pump pays for itself in the energy saved. This would be great if we only pumped clear water all the time.

In the real world we are confronted with many pumping challenges. The liquids may contain solids, which can be heavy or viscous, stringy, abrasive and may even need to be chopped or agitated in order to flow properly. What good is a high efficiency water pump when it becomes clogged with solids and stops pumping?

This is why there are so many different types of pumps designed for specific tasks. While pump manufacturers always want to build pumps that are efficient, making sure the pump does the job is the first priority. When that tank full of waste material has to be moved or that lake needs to be dredged or that sewer needs to be by-passed while repairs take place, using pumps that are practical for the job become more important than the efficiency of the pump.

© 2024 Hydra-Tech. All Rights Reserved. Developed by ISEA Media.