News Archives - Hydra-Tech

Can I use my vehicle with your pumps?

"
Weight
Height
Diameter
Discharge
Inlet Flange
Solid Handling
Hose Ports
Pump Body
Impeller/Screw
Suction Case
Elastometers
Hydraulic Oil
Input Flow
Operating Pressure
Power Source
Engine
Horse Power
Hydraulic Output
Oil Filtration
Oil Reservoir Capacity
Fuel Tank Capacity
Fuel Consumption
Dimensions
full specs

Can I run the pump from a skid steer or back hoe?

Many times we are talking with potential customers and they ask if they can run our hydraulic submersible pumps off of their skid steer or backhoe.  The answer is yes you can run our pumps off of your vehicle’s auxiliary hydraulic circuit as long as the hydraulic output (flow and pressure) meets or exceeds the requirement for the submersible pump. Most of our pumps operate at pressures up to 2500 PSI (170bar) which is common to many vehicle hydraulic power supplies. If your vehicle’s hydraulic system is capable of providing more oil flow than is required by our pumps, a flow control can be added to the circuit to prevent over-speeding.

What if my vehicle’s auxiliary circuit is controlled by a directional valve?

If your vehicle’s auxiliary circuit is controlled by a directional valve (spool valve with lever), it is allowable if they are Open Center (motor spool) valves. In an open center circuit, the valve controlling the direction of oil on the submersible pump is allowed to pass through the valve and return to the oil reservoir and allows the pump impeller to slowly wind down.  See this hydraulic diagram that shows a typical open center hydraulic circuit.

hydraulic circuits

 

 

 

 

 

 

 

 

 

 

If the valve has the capability to run the pump in reverse direction, a check valve must be fitted to the return line to prevent reverse rotation. We recommend running the return line directly back to tank (preferably through a return filter before entering the reservoir) to prevent the possibility of reverse operation and to alleviate the concern of whether your valve is open center or Closed Center (cylinder spool).

If you are not sure if the equipment you currently have is a good match for our pumps, just give us a call 570-645-3779.

Mechanical Seals – What are they and what causes them to fail?

"
Weight
Height
Diameter
Discharge
Inlet Flange
Solid Handling
Hose Ports
Pump Body
Impeller/Screw
Suction Case
Elastometers
Hydraulic Oil
Input Flow
Operating Pressure
Power Source
Engine
Horse Power
Hydraulic Output
Oil Filtration
Oil Reservoir Capacity
Fuel Tank Capacity
Fuel Consumption
Dimensions
full specs

In a centrifugal pump, the mechanical seal (referred to as the “shaft seal assembly”) prevents the water that is being pumped from entering the bearing housing of the pump or simply the area between the motor face and the volute where the shaft passes through.  This is not the same seal as the motor lip seal (or wiper seal), a part of the hydraulic motor that seals the motor shaft at the motor face and prevents any liquid from entering the hydraulic motor.

A picture is worth 1,000 words right?

You can see the different pieces of a mechanical seal, in the picture below – in this case a carbon ceramic seal that would be used in a number of our smaller pumps.  It is called a mechanical seal because there are two halves of the seal with flat faces that are pressed together by a spring.  A spring presses the primary ring (or rotating face) against the stationary face – the primary ring spins with the shaft and impeller, the seat or stationary face doesn’t move.  Tiny amounts of liquid pass between but are typically vaporized by the heat of the shaft and seal before even getting past the mechanical seal – this liquid is  actually important to the mechanical seal as it provides both cooling and lubrication.

 

 

 

 

 

 

 

 

The motor lip seal and the mechanical seal are the heart and soul of any submersible pump.  In another piece we covered the causes of a motor lip seal failure – here we are going to cover the possible causes of a mechanical (or shaft) seal assembly failure.  Some are simple and obvious, some might surprise you.

  1. Mechanical seals do wear out over time. Friction, heat and other factors contribute.
  2. Improper installation. If the mechanical seal is replaced and the new seal is not properly installed, this can lead to a quick failure of your new mechanical seal.
  3. Motor lip seal failure. If one of the many situations (see “What happened to my Motor Lip Seal” article 4/13/17) that can lead to a motor lip seal failure occurs, the bearing housing will fill with pressurized hydraulic fluid and push the stationary seat out of its recess (it will likely dislodge the rotating piece as well) and cause hydraulic fluid to flow into the volute.
  4. Debris in your pump. Something as simple as a plastic garbage bag or piece of rope can wrap around the pump shaft and compress the mechanical seal spring and jeopardize its function.  Something like a long bolt with the strength to lock up the impeller can also have a detrimental effect on the mechanical seal.

We will follow up this post with one that covers some of the material choices available in mechanical seals and the pros & cons involved with those materials.

 

Extremely Custom? No Problem!

"
Weight
Height
Diameter
Discharge
Inlet Flange
Solid Handling
Hose Ports
Pump Body
Impeller/Screw
Suction Case
Elastometers
Hydraulic Oil
Input Flow
Operating Pressure
Power Source
Engine
Horse Power
Hydraulic Output
Oil Filtration
Oil Reservoir Capacity
Fuel Tank Capacity
Fuel Consumption
Dimensions
full specs

One of the things Hydra-Tech Pumps is known for is our customization – we have written about it before in general terms and have developed a long list of options for both pumps and power units from custom paint to custom design.  How about an extreme example of something that started with an idea that we had never built before.

An excellent customer / distributor of ours who works in areas with extremely cold temperatures contacted us in November with an idea for a power unit that would be more appealing to his customers than our normal offerings.  Oh, and it has to perform in subzero temperatures most of the time.  And by the way Hydra-Tech hasn’t made this unit before.  Can we do it?  Our answer, as so often is the case, was “Yes, we can do that.”

The unit pictured below is a fully enclosed (although not sound attenuated) 35 horsepower liquid cooled diesel hydraulic power unit with a 54 gallon fuel tank and 30 gallon hydraulic oil reservoir.  The unit will provide 14 GPM @ 4000 PSI to a submersible pump or any hydraulic tool and has both adjustable flow and adjustable pressure.  For the extreme cold environment we included a 3.5kW Yanmar diesel generator that will power the engine block heater and hydraulic oil heater in the reservoir.  It can also be used to power any electric tools required at the job site.  The generator can be separated from the HPU by removing two pins and as a result can be used in a different area of the job site than the HPU.  Complete access to the inside of the unit is available through the 6 louvered swing doors – 2 on each side and one on each end.  To top it all off, every control on this Hydra-Tech HPU is properly labeled in the customer’s language.

 

 

 

 

 

 

 

 

 

 

This unit shipped about 4 months after the conversation about this HPU got serious enough to become an order.  Have a custom hydraulic power unit design need that no one else will consider?  Give us a call and let’s see if we can do it – I bet we can!

Hydraulic Circuits, Open vs. Closed

"
Weight
Height
Diameter
Discharge
Inlet Flange
Solid Handling
Hose Ports
Pump Body
Impeller/Screw
Suction Case
Elastometers
Hydraulic Oil
Input Flow
Operating Pressure
Power Source
Engine
Horse Power
Hydraulic Output
Oil Filtration
Oil Reservoir Capacity
Fuel Tank Capacity
Fuel Consumption
Dimensions
full specs

There are different types of hydraulic circuits used in fluid power applications.

The two types are described as Open Loop (or Open Circuit) and Closed Loop (or Closed Circuit).

Open Loop Circuits:

These are circuits where both the inlet to the hydraulic pump and the motor (or valve) return are connected to a hydraulic reservoir. The hydraulic flow from the pressure port on the pump is directed to the device that it is powering and then returned back to the reservoir. A relief valve or directional valve in the circuit may divert any unused fluid back to the reservoir. Suction strainers and return filters keep the fluid clean.

Advantages are:
  • Generally less expensive.
  • Better for lower pressure applications (below 3000 PSI).
  • Simple to maintain and easier to diagnose problems if they occur.
Disadvantages are:
  • Could create heat in the system if working pressure exceeds the relief valve setting when using fixed displacement pumps.
  • Reservoir size has to be larger for adequate cooling of the fluid.

Closed Loop Circuits:

These are circuits where the motor return is connected directly to the hydraulic pump inlet. To maintain pressure in the loop, the circuits have a charge pump (a small gear pump) that supplies cooled and filtered oil to the low-pressure side. Closed-loop circuits are generally used for hydrostatic transmissions in mobile applications. The reservoir only has to have enough capacity to feed the small charge pump. These circuits are mainly used with higher-pressure piston hydraulic pumps and motors.

Advantages are:
  • Systems can run at higher pressures with less fluid flow so smaller hydraulic lines can be used.
  • Direction can be reversed without the use of valves.
  • More control options are available.
Disadvantages are:
  • More expensive components are used.
  • May require high-pressure filtration.
  • More difficult to diagnose and repair.

 

Many of the Hydra-Tech Pumps systems use open loop circuits with high efficiency pressure compensated hydraulic pumps to help prevent heat build-up while offering ease of maintenance that is so important in the field.

 

 

 

 

 

 

 

 

 

 

Examples of open and closed loop circuits.

International sales opportunities

"
Weight
Height
Diameter
Discharge
Inlet Flange
Solid Handling
Hose Ports
Pump Body
Impeller/Screw
Suction Case
Elastometers
Hydraulic Oil
Input Flow
Operating Pressure
Power Source
Engine
Horse Power
Hydraulic Output
Oil Filtration
Oil Reservoir Capacity
Fuel Tank Capacity
Fuel Consumption
Dimensions
full specs

In today’s world economy, it surprises us that many businesses large and small shy away from pursuing international sales opportunities.  While the realities of language barriers, shipping regulations, import regulations, letters of credits and wire transfers can appear scary, doing business around the world need not be difficult or risky.

Like any transaction, the key to doing well internationally is to establish a level of trust between the companies involved.  These days, most of the communication from foreign clients reach us by way of email.  We do not treat these people or opportunities as secondary, rather we strive to answer their technical questions and make commercial offerings with the same accuracy and urgency as we provide to our domestic clients.  This quick and clear transfer of information lets a potential buyer know that they are important and that you value their potential business.  Because of email and language translate programs, written communication is most times much clearer and more effective than a verbal exchange.  As the relationship grows over days, weeks or months, both parties will work through more technical issues, negotiate the commercial side of things and with good faith dealings on both sides put pen to paper on proper proposals and purchase orders.

That sounds easy, but what about the pitfalls associated with commercial transactions and logistics?  On deals that are not in the millions of dollars, it is our experience that over 90% of foreign entities accept that a wire transfer between banks participating in the Swift program is both he most convenient and simplest way to complete transactions.  The paperwork, fees and risks are minimal when compared to letters of credit or doing business on open terms.  Of course as the relationship grows, moving a trusted oversees partner to open terms is something that we have done successfully in places like Russia, China, UK and Australia.

Probably the single biggest key on the logistics side is selecting a freight forwarder that has extensive experience moving product in to the destination country.  This may mean different carriers for different areas of the world.  Often times the customer desires to direct the freight, so providing them with accurate weights and dimensions (often in kilograms and centimeters) is required.  A word of caution here…there are export restrictions placed by our government which forbid the sale or re-sale of goods to restricted countries and business entities.  For information on this, it is best to review all federal trade regulations.

It should come as no surprise that the most difficult part of the process is the actual paperwork.  Most countries place very exacting requirements on the importers of products; from requiring a license for every item code brought in to fumigated packing materials, to certain types of shrink wrap.  While it may ultimately be up to the client to jump through these hoops, cooperation and patience on the seller’s part is required to further cement the relationship and to insure future business.

Because we take the steps outlined above, Hydra-Tech Pumps has been able to share our passion for providing pumping solutions to at least 20 countries around the world.  Beyond the lands mentioned above, we placed pumps in Malaysia, Ireland, Denmark, Ukraine, Poland, Greece, Turkey and others.  So regardless of the political climates around the world, there are many great business opportunities around this growing smaller planet.

ConExpo – The biggest trade show in the Western Hemisphere!

"
Weight
Height
Diameter
Discharge
Inlet Flange
Solid Handling
Hose Ports
Pump Body
Impeller/Screw
Suction Case
Elastometers
Hydraulic Oil
Input Flow
Operating Pressure
Power Source
Engine
Horse Power
Hydraulic Output
Oil Filtration
Oil Reservoir Capacity
Fuel Tank Capacity
Fuel Consumption
Dimensions
full specs

Wow.  Although Hydra-Tech Pumps has exhibited at the ConExpo / ConAGG show before, this was my first time and the word wow doesn’t even begin to convey the size and scope of this show held every 3 years in Las Vegas.  Labeled as the “biggest trade show in the Western Hemishpere” this show earned its reputation.  In my 22 years of trade shows, ConExpo is easily twice as big as the next largest show I have attended.  The stats:  more than 2800 exhibitors whose displays took up more than 2.8 million square feet of exhibit space to show their products to 128,000 total attendees, including 26,000 international visitors from 150 countries.  Twenty percent of the visitor came from other countries – the Hydra-Tech Pumps booth saw a steady stream of visitors from Australia, South America, Southeast Asia, Europe, Africa, the Middle East as well as Canada, Mexico and the US.

In our booth, Hydra-Tech Pumps displayed a 16 horsepower Kohler diesel power unit and a 13 horsepower “special” power unit with a Yamaha engine and galvanized frame.  We had a 6” Sand / Slurry pump, an S6V sewage pump, an S4T-2 an S4TLPAL, and a stainless steel S3T.  Sand / slurry pumping seems to be the hot need right now – it seems as though every other conversation at the show was about pumping sand or grit, dredging, or running a CSL pump in some similar application.

As with any trade show there are so many different aspects to appreciate.  We enjoyed meeting many new prospects both local and far flung.  Having current customers, distributors, dealers, competitors and vendors come through the booth is always fun.  We had the chance to explore the IFPE section of the show to see what new hydraulic technologies can help us build better power units and controls.  And I can’t speak for my colleagues, but walking around the indoor and outdoor exhibits took me back to being a kid playing with Tonka trucks in a pile of dirt in my parent’s back yard.  Excavators, trucks, cranes, pavers, wood chippers and every piece of equipment used in any aspect of construction and agriculture imaginable.  The next ConExpo / ConAGG show March 10-14 in 2020 and I can’t wait to go.

Written By: Jeff Whittaker

In a blink of an eye, the month is over……

"
Weight
Height
Diameter
Discharge
Inlet Flange
Solid Handling
Hose Ports
Pump Body
Impeller/Screw
Suction Case
Elastometers
Hydraulic Oil
Input Flow
Operating Pressure
Power Source
Engine
Horse Power
Hydraulic Output
Oil Filtration
Oil Reservoir Capacity
Fuel Tank Capacity
Fuel Consumption
Dimensions
full specs

In 2017 we celebrate 40 years in business and already, in the blink of an eye, January is in the rear view mirror and we’re halfway through February.  Any of those New Year’s resolutions holding up?  Both personally and professionally, January represents that fresh start that allows you to reset and refocus on the coming 12 months.  It’s funny though how your work can get in the way of, well, your work.  Sometimes the day to day busy of taking calls, helping customers, preparing quotes and getting orders out the door while necessary can keep us from the things we should be doing.

We are halfway through our very trade show-centric 1st quarter, with 4 shows in 10 weeks to start the year.  The amount of time that goes into all of the details related to exhibiting at a show is significant.  Forgetting about the work done in the 8-12 months before the show, we pack the equipment for the trade show, make the pick-up date, fly to a city, unpack and set up the booth at the show, man the show, break down the booth, ship it home, fly home, catch up on the week you missed, get the stuff back from the show and start all over for the next one.  The upside is getting the chance to visit with customers and prospects and get feedback (the good and the bad) on our equipment from existing customers.  We also look for feedback from prospects on our equipment as well as what they currently use instead of Hydra-Tech equipment.  Oh, and St Louis and Indianapolis are lovely this time of year, so there’s that upside too.

Once the dust clears on the trade shows in early March after ConExpo, we’ll catch our breath and begin to plan travel and training for the rest of the year, evaluate potential shows through the end of 2017 and begin working on those we’re committed to in 2018.

It starts with an idea…..

"
Weight
Height
Diameter
Discharge
Inlet Flange
Solid Handling
Hose Ports
Pump Body
Impeller/Screw
Suction Case
Elastometers
Hydraulic Oil
Input Flow
Operating Pressure
Power Source
Engine
Horse Power
Hydraulic Output
Oil Filtration
Oil Reservoir Capacity
Fuel Tank Capacity
Fuel Consumption
Dimensions
full specs

When Ken Reim, the founder of Hydra-Tech pumps needed a product that wasn’t available to him to solve a problem for the Peace Corps in Sierra Leone, Africa in 1977, he designed and developed the HT8G and S2, the first power units and pumps sold by Hydra-Tech. This was the story with many other products Hydra-Tech has come to be known for in its time in the pump and power market.

In 2017 Hydra-Tech will celebrate 40 years in business and the concept of custom designed and purpose built pumps and power units continues today. Sure Hydra-Tech sells a lot of its “bread and butter” products week in and week out. At the same time, we have never shied away from the calls that start out with “I don’t know if you guys can do this or not” or “I have an idea for something I need – do you think you can build it?”

The amazing thing about Ken is that he is as passionate about these calls today as he was during the first five years Hydra-Tech was in business. He likes that challenge that comes with making something new that we haven’t built before. Might be a hydraulic power unit to run a piece of equipment that we don’t manufacture. This year we built and shipped as many as 10 custom power units to run something other than a Hydra-Tech pump and have a couple more we are working to get out the door in the coming weeks.

Customization of our pumps and power units is always an option – we are wrapping up the development of a menu of options for both types of product and they will be up on the website soon. We had a new customer from a marine diving / salvage business contact us about a week ago with a request for an item that we have never built or offered – an idea to solve a problem he has. We are working right now to take his idea from a sketch on a blank piece of paper through design and fabrication to a finished product. As a smaller organization, this is one of the many benefits we can offer our customers over some of the big boys, who would rather sell what they have and not what they don’t have. Do you have an idea related to pump and power that we can help you with?

New Year’s Resolutions

"
Weight
Height
Diameter
Discharge
Inlet Flange
Solid Handling
Hose Ports
Pump Body
Impeller/Screw
Suction Case
Elastometers
Hydraulic Oil
Input Flow
Operating Pressure
Power Source
Engine
Horse Power
Hydraulic Output
Oil Filtration
Oil Reservoir Capacity
Fuel Tank Capacity
Fuel Consumption
Dimensions
full specs

As we approach the end of 2016 everyone thinks about their New Year’s Resolutions. I’m going to lose weight. I’m going to go back to school. I’m going to be a better person. We all kick around the usual promises and hopefully make one or two stick. As a company we go through some of the same thought processes as it relates to our business and our customers, but on a year-round basis. 2016 has been a challenging year with oil and gas down, domestic mining suffering, and of course all of the fun leading up to (and following) our election in November. Many of our customers have suffered and we have suffered with them.

In 2017 Hydra-Tech Pumps will celebrate 40 years in business since Ken’s filled the first order in 1977 for some pumps and power units for the Peace Corps. Despite the challenges in 2016 we worked throughout the year on a number of things that will ultimately benefit our customers. This perpetual review of everything we do covers the mundane daily administrative tasks all of the way up to which trade shows we participate in and where our sales travel should take us. It is never easy and ever evolving – one particular subject this year was addressed, debated and discussed, and ultimately improved 4 different times between February and this week until we think we got it fine-tuned to where we want it – again with the benefit of the customer in mind during the entire process.

We constantly look at collateral to insure that it is accurate for our customers. Our website was completely redesigned and launched in April with new enhancements like our chat feature. There have been constant improvements made to the new website since its launch as well. Our spec sheets have been reviewed and updated this year. We re-run pump tests to insure that our pump curves are accurate and have begun working with an outside source to certify our curves. In 2017 we will have a brand new catalog available.

So as far as New Year’s Resolutions go, here’s what you can expect from Hydra-Tech Pumps in 2017. We will continue to work hard to earn and keep your business by trying to continually improve as a company to try and exceed your customer service expectations. We will celebrate 40 years of existence. We might not lose weight. Happy New Year to you and Cheers to a happy, healthy, and successful 2017!

Holiday Season followed by Trade Show Season

"
Weight
Height
Diameter
Discharge
Inlet Flange
Solid Handling
Hose Ports
Pump Body
Impeller/Screw
Suction Case
Elastometers
Hydraulic Oil
Input Flow
Operating Pressure
Power Source
Engine
Horse Power
Hydraulic Output
Oil Filtration
Oil Reservoir Capacity
Fuel Tank Capacity
Fuel Consumption
Dimensions
full specs

Ah December, the most wonderful time of the year (at least according to a song I’ve heard). At home you have the frantic lead up to the holidays, the shopping, the traffic and people, the work to get everything done, the arrival of family or the travel to see family and the holidays themselves. At work you have the full court press to finish a strong calendar year, sales and expense budget forecasts for the coming year, and the pressure of a holiday party (don’t drink too much). If you live north of the Mason-Dixon line, throw in the exciting possibility of foul weather. Finally, as of January 1st you have to remember to write the year as 2017 – how many weeks until that happens without thinking about it?

2017 starts off with a run of trade shows for Hydra-Tech – we hope that might see you at one of them.

From Tuesday January 17th through Friday January 20th we will be exhibiting in Booth C6802 (Central Hall) at the World of Concrete show. The event is held inside and outside of the Las Vegas Convention Center. You can find more information at https://worldofconcrete.com.  In 2015 this was ranked as the 21st biggest trade show by square feet of the top 250.

In February Hydra-Tech Pumps we will exhibit at the WWETT Show at the Indiana Convention Center in Indianapolis. WWETTT stands for Water & Wastewater Equipment, Treatment & Transport. You can find us at Booth #4105. Learn more or register to attend the show at https://wwettshow.com.

In March comes the big boy of trade shows ConExpo – Con/Agg – this show is every 3 years and always in Las Vegas – to give you an idea on just how big this indoor / outdoor event is, it fills the entire Las Vegas Convention Center (all halls and parking lots) – in 2014 it covered 2.35 MILLION net square feet and 2017 will be even bigger. Hydra-Tech Pumps will be in booth #90925 – for additional information on the show or to register go to http://www.conexpoconagg.com.

So enjoy the holidays, celebrate the New Year and if you can, come visit us at one of these shows in 2017!

What does CPB mean in the pump world?

"
Weight
Height
Diameter
Discharge
Inlet Flange
Solid Handling
Hose Ports
Pump Body
Impeller/Screw
Suction Case
Elastometers
Hydraulic Oil
Input Flow
Operating Pressure
Power Source
Engine
Horse Power
Hydraulic Output
Oil Filtration
Oil Reservoir Capacity
Fuel Tank Capacity
Fuel Consumption
Dimensions
full specs

While not tasty like Chocolate Peanut Butter candy, viewed by millions like the Corporation for Public Broadcasting or listed on the New York Stock Exchange like “CPB”, The Campbell’s Soup Company, the “CPB” all pump choosers and users should know about is the Contractor’s Pump Bureau.

Around since 1938, the CPB, now part of the Association of Equipment Manufacturer’s (AEM), provides practical, technical and market information available to any person interested in making the most appropriate pump selection when faced with moving a fluid from point A to B.

The mission statement of the CPB:

The Contractors’ Pump Bureau promotes matters of mutual interest to pump users, manufacturers and major parts and component suppliers.

More specifically, the CPB’s work product includes agreed upon standards for pump equipment operational safety, explicit methods for noise level testing of pumping systems, a Pump Selection Guidebook and exacting guidelines for the consistent and accurate representation of pump performance curves.

In addition, the members meet twice per year to discuss regulations, trends and other factors which impact all participating companies. The body of members go beyond pump companies and include other manufacturers that supply ancillary equipment like controls and engines to a long list of reputable pump companies. With insights coming from varied inputs, including the politically in tune AEM, the informational exchange serves to broaden the knowledge base of all parties.

As the CPB nears its 80th year of existence, plans are in the works to spread the news and grow the membership. CPB member representation at the upcoming ConExpo 2017 will be strong, and the active member companies plan to fly the CPB logo in their respective booths while taking the opportunity to invite any and all interested parties to attend two informational sessions at the show being held at the Las Vegas Convention Center from March 7-10, 2017.

For a full list of members, and to inquire about joining both AEM and CPB, follow the link below.

https://www.aem.org/groups/product-specific/contractors-pump-bureau-cpb/

When a vacuum truck can’t reach it, we can!

"
Weight
Height
Diameter
Discharge
Inlet Flange
Solid Handling
Hose Ports
Pump Body
Impeller/Screw
Suction Case
Elastometers
Hydraulic Oil
Input Flow
Operating Pressure
Power Source
Engine
Horse Power
Hydraulic Output
Oil Filtration
Oil Reservoir Capacity
Fuel Tank Capacity
Fuel Consumption
Dimensions
full specs

Faced with either cost overruns or lost opportunities due to the inability of a vacuum truck to handle tank pump outs from long distances while at the same time dealing with stringy solids, a Tennessee company went looking for a better way.

In more and more instances, tanks are getting filled up and clogged up with stringy materials which are difficult to pump and sometimes not pump-able at all if the equipment being used can’t pull enough vacuum.

Faced with this reality, sanitary pumpers either had to turn their backs on some potentially profitable work, or haul often unreliable trash pumps long distances over uneven terrain in order to be able to set up and pump out remote tanks.  While these trash pumps could be effective, that was not always the case.  The sometimes performance coupled with the weight and maneuverability and suction hose failure problems of these pumps, meant breaking even or even losing money on some jobs that just did not go right.

After calling the manufacturer, Hydra-Tech Pumps and being connected with a local representative from a distributor in Chattanooga, TN, the end user was able to demo a submersible trash pump, S3TRDI powered by an HT13G hydraulic power unit.

This hydraulically driven pumping system solved all of the handling and performance issues and saved time to boot.  Because the pump is light weight and can be set up with hydraulic hoses extending up to 150’ from the power source, it was easy for one person to get the pump down to and in to the tank to be pumped.  Then, because the pump is self-priming when dropped in the pumpage, the only other hose required is the hose on the discharge side of the system.  With all the hoses in place, the user fired up the power unit, activated the hydraulics and observes as the S3TRDI not only handled the solids, it also pumped out the tank at a rate of roughly 300 gallons per minute.

The demo went so well that the end user immediately purchased the demo package and continues to be happy with his investment.

Have a serial number?

"
Weight
Height
Diameter
Discharge
Inlet Flange
Solid Handling
Hose Ports
Pump Body
Impeller/Screw
Suction Case
Elastometers
Hydraulic Oil
Input Flow
Operating Pressure
Power Source
Engine
Horse Power
Hydraulic Output
Oil Filtration
Oil Reservoir Capacity
Fuel Tank Capacity
Fuel Consumption
Dimensions
full specs

Hydra-Tech Pumps uses serial numbers as a way to identify which pump or power unit our customers have purchased.   It allows us to track the year or specific custom parts that may be used on the units and also as a means for finding compatible parts.  All of the equipment is supplied with a serial identification tag at the time of fabrication.   This identifier will help with any questions or issues that may arise and also used for quality control, service management and sometimes even theft.  Anything that we custom build or if we use a non-standard part on your pump or power unit will be noted in our system before it is shipped.

Now that we know why we have serial numbers let’s talk about where you can find it on your particular system.  On our smaller pumps which includes all 2 inch and 3 inch pump models, the serial number is stamped on the side of the top cover.  On our larger pumps which includes 4 inch pumps and larger, look for a metal tag mounted on the top of the top cover on the pump.  As for the power units, the open power units have the serial number tag mounted on the lifting bracket.  The serial number on the closed power units, also called the Quiet Pak is located in the door of the unit.

The system used for the serial numbers are different for the pumps and power units.  The pumps will start with a number and then have a letter and followed up with three more numbers.  On the power units the serial number will start with a letter followed by four numbers.  The other information you will see on the tag are the model number, the kilowatts and the weight of the unit.

If you have additional questions about serial numbers, feel free to call us at 570-645-3779 or email to htpump@hydra-tech.com

You want it? You got it?

"
Weight
Height
Diameter
Discharge
Inlet Flange
Solid Handling
Hose Ports
Pump Body
Impeller/Screw
Suction Case
Elastometers
Hydraulic Oil
Input Flow
Operating Pressure
Power Source
Engine
Horse Power
Hydraulic Output
Oil Filtration
Oil Reservoir Capacity
Fuel Tank Capacity
Fuel Consumption
Dimensions
full specs

Hydra-Tech Pumps manufactures an extensive line of Hydraulically Driven Submersible Pumps and Gas, Diesel and Electric Hydraulic Power Units.  We stock many of the smaller pumps and enough parts for our bigger pumps that we can typically get them assembled in a reasonable amount of time.  We typically have a few of the more popular small (20hp and smaller) power units in stock and ready to ship.

For those who might not know, Hydra-Tech Pumps prides itself on our ability to meet customer needs through both the adaptation of existing products as well as the development of new products to suit everything from a one-off project to an OEM development project.  Because of our in house design and manufacturing capabilities Hydra-Tech Pumps is able to control everything about your pump / power unit build from the paint color to the choice of hydraulic motor and engine.

Need a slight “tweak” for the pump you are ordering?  Lose the strainer, get the pump without pigtails, add a flow control to protect the pump when running it with a larger power unit, and get a different motor based on your power setup.  How about a custom color?

And for your power unit.  Want a remote shut down kit?  Need a twin circuit?  Whose control panel do you prefer?  Have a particular engine that you prefer over the engines we typically use?  Let us know.  Is Tier 4 Final a concern?  We have solutions.  Want your power unit painted in your company colors?  How about a coolant gauge or shutdown switch?  Need something bigger than a 200hp power unit?  Let us know – we have built power units bigger than what we show in our catalog and online.  This is true as well in Electric Hydraulic Power Units where we have built units up to 400hp.  Do you need an electric power unit that is explosion proof?  We can do that too.

Whether you need a little bit of customization or something exclusive to your requirements Hydra-Tech Pumps is ready willing and able to build it for you!

Choosing the Right Pump and Power Unit for the Job

"
Weight
Height
Diameter
Discharge
Inlet Flange
Solid Handling
Hose Ports
Pump Body
Impeller/Screw
Suction Case
Elastometers
Hydraulic Oil
Input Flow
Operating Pressure
Power Source
Engine
Horse Power
Hydraulic Output
Oil Filtration
Oil Reservoir Capacity
Fuel Tank Capacity
Fuel Consumption
Dimensions
full specs

At Hydra-Tech, one of our specialties is helping our customer choose the correct pump and/or power unit. We recognize that choosing the right pump for your situation is a very important decision, and that using the wrong pump can cause frustration and prevent the job from being accomplished in a timely manner. For these reasons it is important for you to consider several factors before you turn to us for your hydraulically driven submersible pump and hydraulic power unit needs.

Some of the factors to consider are the following:

  • The type of hydraulically driven pumps available-Solids handling, General purpose, Axial mixed flow, Sand and slurry, Slim line, Shredders, Centrifugal screw, High performance pumps with high heads or high volumes and each type serves a specific purpose. For example, axial mixed flow pumps are ideal for moving large volumes of fluid at a relative low head, while the centrifugal screw pump is ideal for pumping high viscosity liquids such as crude oil, latex, and molasses type materials.
  • There are three main factors when selecting a pump; the total head of discharge, what your desired flow rate is at that head, and the characteristics of the pumpage you’re pushing. If you know this information you will be able to narrow the pump down to the right one for the job!
  • When selecting a hydraulic power unit, you can choose from one of our standard power units which include electrical motor, gasoline engine, propane or natural gas engines, diesel engines or you can use the hydraulic power you may have such as a skid-steer, excavator, and tractor.

NOTE: The hydraulic power unit-Is totally customizable we’ll listen to what your requirements are and design and manufacture to your specific needs.

Customer Focused

A 40 year tradition of listening to what the customer wants to accomplish and then applying our engineering and manufacturing skills to meet those requirements. Whether it’s a catalog or custom product, we promise to do the work up front to make sure that the product we deliver exceeds customer expectations. After the sale, we offer product support at a world class level.

“Battleship Texas BB 35 – The Only Remaining Dreadnought”

"
Weight
Height
Diameter
Discharge
Inlet Flange
Solid Handling
Hose Ports
Pump Body
Impeller/Screw
Suction Case
Elastometers
Hydraulic Oil
Input Flow
Operating Pressure
Power Source
Engine
Horse Power
Hydraulic Output
Oil Filtration
Oil Reservoir Capacity
Fuel Tank Capacity
Fuel Consumption
Dimensions
full specs

battleship-texas

The U.S. Navy commissioned USS Texas on March 12, 1914. She was the most powerful weapon in the world, a complex product of an industrial nation emerging as a force in global events. In 1916, USS Texas became the first U.S. battleship to mount anti-aircraft guns. She was also the first to control gunfire with directors and range-keepers. These early computers increased firing accuracy.

In World War I, USS Texas joined the 6th Battle Squadron of the British Grand Fleet early in 1918. Her duties included laying a North Sea mine barrage, responding to German High Seas Fleet maneuvers, and helping prevent enemy naval forces from cutting off Allied supply lines.
Late in 1918, she escorted the German Fleet to its surrender anchorage.

In 1925, the Navy opted to modernize USS Texas instead of scrapping her. This meant converting the ship to run on fuel oil instead of coal. Tripod masts and a single stack replaced the ship’s cage masts and two smoke stacks. Torpedo blisters added another layer of protection to the ship’s waterline.

USS Texas received one of the first radars in the U.S. Navy in 1939. With new anti-aircraft guns, fire control and communication equipment, the ship remained an aging but powerful asset in the U.S. naval fleet.

USS Texas became flagship of thebyron-flynt-2-2 U.S. Atlantic Fleet before World War II. She had a close call in 1941 while on “Neutrality Patrol.” German Submarine U-203 had the ship in its sights and asked permission to fire. Adolf Hitler eventually denied permission to engage the ship, or any other U.S. ship.

During World War II, USS Texas fired on Nazi defenses in Normandy on D-Day, June 6, 1944.
Shortly afterward, German coastal defense artillery near Cherbourg hit the ship twice. The first shell exploded, injuring 12 and killing one. This was the only combat fatality ever aboard USS Texas. The second shell hit the ship, but did not explode. The Navy deactivated this “lucky shell” and returned it to the ship as a good luck charm. After repairs, the battleship shelled Nazi positions in Southern France before transferring to the Pacific. There she lent gunfire support and anti-aircraft fire to the landings on Iwo Jima and Okinawa.

After Japan’s surrender, USS Texas carried soldiers stationed across the Pacific home from war.
When she completed her final mission, the state of Texas acquired the ship. On April 21, 1948, Battleship Texas was decommissioned, and became a memorial ship.

Today, Battleship Texas is a floating museum and the last remaining U.S. battleship of her kind. Of the eight American battleships open for public display, she is the only one that served in both World Wars and stands as a memorial to the bravery and sacrifice of the servicemen who fought in both World Wars.

The battleship is both a National Historic Landmark and a National Mechanical Engineering Landmark. Ensuring her future will require a concerted effort from Texas citizens and businesses. Luck has gotten her this far, but now it’s up to citizens to save Battleship Texas.

Our Connection to the Battleship Texas…

battleship-texas-2On June 14, 2012, T&T Marine Salvage was contacted and provided an in-water survey and made temporary hull repairs in response to uncontrolled flooding onboard the USS Texas. On June 18, 2012, T&T was again requested to provide additional commercial diving, marine salvage and pollution response services to include continued underwater hull damage surveys, internal tank entries with commercial divers, dewatering of flooded tanks, opening of hatches for inspection, environmental response operations, and additional temporary repairs of the damaged hull. To support these expanded operations, T&T Marine Salvage also provided a Salvage Master, Project Manager and Safety Officer, as needed, throughout the duration of the project. Salvage services included, but were not limited to, submersible hydraulic pumping operations, temporary hull repairs, safety officer oversight, and naval architectural services.

After nearly two months the T&T and USS Texas Crews sealed as many leaks as possible and dewatered the spaces using portable hydraulic pumps. The salvage crew accessed a large number of void spaces to determine if they had been affected including the blisters which had been installed in 1925 to protect the hull against torpedoes.

A plan was developed to place pumps onboard the USS Texas that would remain after the salvage crew was demobilized. T&T installed several pumps in strategic locations as a precaution for further water ingress. The pumps included two Hydra-Tech portable hydraulic submersible pump systems that were placed on board in case of an emergency. These systems were chosen due to their lightweight and ease of installation in various tanks as needed. The S3TC portable three inch pump and HT11DXR portable hydraulic power unit have been used by T&T for many years on smaller salvage projects. The proven reliability and durability of these systems were one of the reasons they were chosen for this project.

 

To lea7101-mainmountmonument-2rn more about the Battleship Texas please visit http://tpwd.texas.gov/state-parks/battleship-texas. For an interesting video of the structural repairs and dry berth project please go to https://www.youtube.com/watch?v=OYJwhCyPUls.

To learn more about T & T Marine Salvage and their impressive operations and capabilities, check out their website at www.teichmangroup.com.

To learn more about Hydra-Tech Pumps and their hydraulically driven submersible pumps and hydraulic power units, please visit their website at www.hydra-tech.com.

We appreciate the significant help on this piece provided by Kevin Teichman of T & T Marine Salvage and the Texas Parks & Wildlife / Battleship Texas Historical Site.

Heading to Vegas!

"
Weight
Height
Diameter
Discharge
Inlet Flange
Solid Handling
Hose Ports
Pump Body
Impeller/Screw
Suction Case
Elastometers
Hydraulic Oil
Input Flow
Operating Pressure
Power Source
Engine
Horse Power
Hydraulic Output
Oil Filtration
Oil Reservoir Capacity
Fuel Tank Capacity
Fuel Consumption
Dimensions
full specs

 

MINExpo2016_cmykIn just 2 weeks, Hydra-Tech Pumps will be headed to Las Vegas, Nevada for the 2016 MINExpo Trade Show.  The event is held both inside and outside of the Las Vegas Convention Center and runs from Monday September 26th to Wednesday September 28th.  You can find more information at www.minexpo.com.

The theme for the show this year is “MINExpo 2016 is all about solutions.”  This is similar to the statement Hydra-Tech uses on its catalog “The World Pumps US for Solutions”.  Ultimately, that is what all sales are about no matter the industry, someone has a problem or requirement for which they are looking for a solution.  We will be there for those visitors who have a challenging dewatering requirement but aren’t sure what kind of pump they need.  High head application?  Corrosive or slurry-like pumpage?  Need a dewatering pump specifically for Phosphate mining?  We want your tough applications so we can provide an effective solution with our pumps.

At the same time, we look forward to seeing existing customers who will be attending the show.  We love to see the people who use our equipment on a daily basis and get feedback on our pumps – the good and the “needs improvement” kind.  The only way we get better is through a willingness to listen to both the compliments and the criticisms.

Finally, the trade show is a way to make sure we are up to speed on an industry, in this case, mining.  Although mining in the United States is down, the day to day needs of the global marketplace continues to create greater demand for the metals, minerals and energy that come out of the Earth.

So if you are reading this, and you are heading to Las Vegas for the MINExpo, please stop and see us at Booth 27029 in the South Hall!

Picking the Team to Pump Out a Big Win in the Big Game

"
Weight
Height
Diameter
Discharge
Inlet Flange
Solid Handling
Hose Ports
Pump Body
Impeller/Screw
Suction Case
Elastometers
Hydraulic Oil
Input Flow
Operating Pressure
Power Source
Engine
Horse Power
Hydraulic Output
Oil Filtration
Oil Reservoir Capacity
Fuel Tank Capacity
Fuel Consumption
Dimensions
full specs

Pumped Up for Football?

The prime week of a new season of professional football means all team hold hopes for the NFL Championship.  Everyone likes to think they can predict the future and we at Hydra-Tech Pumps will join that crowd and offer a few observations and our best predictions for division winners, playoff teams and the ultimate champion.

Surprise Team of the Year – Tennessee Titans, Runner Up Tampa Bay Bucs

Disappointments of the Year – Oakland Raiders, Runner Up – Buffalo Bills.

AFC East: The Jets and Dolphins pump some excitement in to the division race as they make headway in the annual quest to overcome New England’s dominance.  The Bills disappoint early and often, Rex Ryan hears the boos and is the first coach flushed.  In the end, and in honor of a great Patriot fan, Laurie Auger from BJM pumps, we are predicting one more divisional championship for the Patriots.

AFC North: With many new faces, the Steelers defense needs to quickly move up the performance curve to balance the force that will be Ben Roethlisberger and the offense; Cleveland’s rebirth will not overcome the centrifugal force caused by years of poor personnel moves and that mean three wins at best; Under the negative pressure of relying on youth and aging veterans, the Ravens will make an early push before cavitating down the stretch and fall from the playoffs.  With one of the best rosters in the league, the Cincinnati Bengals will overcome some early head pressure and capture this division.

AFC South: Mining a diamond out of this slurry of mediocrity — the Texans, Jaguars, Colts and Titans– is not easy…The Texans fail with the overmatched Brock Osweiler; the underachieving Jags and Gus Bradley fail to meet the duty point and Andrew Luck may not pass solidly through week 3 if his offensive line continues to perform like a leaky suction hose.  Powered by a dynamic two headed run game and some added lift from Marcus Mariota the Titans and their dynamic defensive front the go from worst to first and make the playoffs.

AFC West:  We will bypass on the resurgence of the Raiders.  The lack of skill position talent and depth means 8-8.   As solid as they have been in recent years on defense, Chiefs front will struggle to push the pocket and the offense will not win shootouts.  The Chargers, recirculating for one more year in San Diego will improve on both sides of the ball and surprise many by finishing second to the defending champion Broncos…a team whose defense will help maximize the performance curve of an average offense.

AFC Winners: Patriots, Bengals, Titans and Broncos

AFC Wild Cards: Pittsburgh and NY Jets

AFC Title Game: Pittsburgh and Bengals (yes they will finally win a Playoff game).

AFC Champion – Pittsburgh

 

NFC East: With a weak offensive line, the Giants will need to count on a repaired defense and big plays from Eli and Odell, it won’t be enough as they struggle to keep Manning upright.  The favored Redskins filled holes on their defense, but the O-Line may struggle.  While their defense will be surprisingly strong, Dallas with no Romo is like a pump without an impeller… It just doesn’t work.  Putting Carson Wentz behind a poor offensive line may doom the future of the franchise and certainly keep the Eagles at the bottom half of division.

NFC North: Maybe not any team’s division to win, but it will be competitive top to bottom as the lions build on last year’s late success, the Bears improve on defense and at Soldier Field and the Packers and Vikings fight it out for the top spot.  In the end, Aaron Rogers while still in his prime, Eddie Lacy and a strong group of receivers overcome Adrian Petersen’s big year and the stout Minnesota defense to propel the Packers to the top of the division.

NFC South: The offensive arsenals of all four teams will make the games exciting.  But with the Saints and Falcons both trying to rebuild on the defensive side and Tampa Bay running with a new head coach, the class of this division is clearly the Carolina Panthers led by Cam “MVP” Newton.

NFC West:   Some like Seattle some Arizona and no-one gives San Francisco or the Rams much of a chance.  We have to agree.  The 49ers need players and the Rams need coaching and front office reboots.  The Seahawks will dredge up enough offense to dominate at home and do enough on the road to secure a Wild Card, but the Cardinals roster strength will carry them to more road wins and the division title.

NFC Winners:  Redskins, Packers, Panthers and Cardinals

NFC Wild Cards: Seahawks and Vikings

NFC Title Game: Panthers and Cardinals

NFC Champion: Cardinals

Championship Game:  In a rematch from 2009, the outcome is reversed as the Cardinals deadhead the Steelers 42-27.

 

Sludge and slurry, no problem!

"
Weight
Height
Diameter
Discharge
Inlet Flange
Solid Handling
Hose Ports
Pump Body
Impeller/Screw
Suction Case
Elastometers
Hydraulic Oil
Input Flow
Operating Pressure
Power Source
Engine
Horse Power
Hydraulic Output
Oil Filtration
Oil Reservoir Capacity
Fuel Tank Capacity
Fuel Consumption
Dimensions
full specs

S4VHL

Hydra-Tech’s S4VHL, four inch hydraulic submersible sludge/slurry pump offers three inch solids handling and head capabilities up to 210 feet.  This heavy-duty slurry pump is designed to handle wastewater and sewage and will fit through a 20” diameter manhole.  The primary uses for this pump are sewer by-pass into force mains and general transfer of solids laden fluids.  Combined with our HT25 to HT60 power units, the S4VHL is capable of flows up to 750 GPM.  This safe and variable speed hydraulic drive submersible pump can be used where electric power is hazardous or impractical.

 

Example of how this pump is being used.

Problem: Treatment plant in a large southern municipality, pumping out of the on-site clarifier using hydraulically driven slurry gate pumps.  Pumps would frequently clog with rags, diapers or stringy materials causing the need to pull the pump out and clean it as often as 1-2 times per day.

Solution: The national equipment rental company servicing the job-site suggested installing a Hydra-Tech Pumps’ vortex impeller S4VHL hydraulically driven submersible pump. The municipality agreed to a side by side test in the same clarifier.  Over the course of several days, the slurry gate pump had to be pulled and cleaned six times while the S4VHL pump with the stainless steel vortex impeller did not stop working.*

Result: This municipality liked the S4VHL pump so much they are budgeting for the purchase of their own system.

*The superior performance by the vortex impeller can be attributed to the nature of vortex flow pumping.  Unlike channel impeller pumping where the pumpage comes in full and direct contact with the vanes on the impeller the pumping action in a vortex pump takes place mainly in front of the impeller.  So, stringy materials, semi solids and other debris are balled up in front of the impeller and ejected from the pump.

 

 

Improve and upgrade

"
Weight
Height
Diameter
Discharge
Inlet Flange
Solid Handling
Hose Ports
Pump Body
Impeller/Screw
Suction Case
Elastometers
Hydraulic Oil
Input Flow
Operating Pressure
Power Source
Engine
Horse Power
Hydraulic Output
Oil Filtration
Oil Reservoir Capacity
Fuel Tank Capacity
Fuel Consumption
Dimensions
full specs

In the Pump Industry, a common cause of pump downtime is mechanical seal failure.  In order to avoid having that phone call about a blown seal from our customers, Hydra-Tech Pumps is always trying to improve and upgrade our products.  One particular pump we have improved is the 6 inch hydraulically driven submersible trash pump, by making a few minor changes.  The first change is replacing the current mechanical seal with a newly designed and better performing mechanical seal which provides both superior materials of construction and is cost efficient.  The look of this seal is completely different.  The open springs have been eliminated so items such as wire ties won’t get held up, which ultimately could lock up the rotating section of the seal and create a failure.

This seal is made up of silicon carbide with Viton elastomers and stainless steel making it resistant to certain chemicals. Along with the mechanical seal improvement there are additional changes to the pump.  The oil housing will be designed with kick out veins which will help keep the pumpage and solids from building up around the mechanical seal area.  There will also be a pin installed in the oil housing to hold the stationary seal from rotating, which then allows the bellow seal to be pushed completely down onto the impeller.  P80 rubber lube is used when assembling the seal.  Each seal comes with set screws to hold it in place.

Sometimes when you hear upgrade or improvement you see dollar signs.  That is not the case here.  This upgraded seal will remain the same cost as the old seals but adds so much more to your 6” pump.  Hydra-Tech understands the customers’ concerns and always pushes to find a better way.

Please see our other post http://hydra-tech.com/what-happened-to-my-motor-lip-seal/ to find out what can cause seal failure.

Friction Loss Impacts on Hydraulic Power

"
Weight
Height
Diameter
Discharge
Inlet Flange
Solid Handling
Hose Ports
Pump Body
Impeller/Screw
Suction Case
Elastometers
Hydraulic Oil
Input Flow
Operating Pressure
Power Source
Engine
Horse Power
Hydraulic Output
Oil Filtration
Oil Reservoir Capacity
Fuel Tank Capacity
Fuel Consumption
Dimensions
full specs

Most people are familiar with friction loss and velocity requirements when it comes to pump discharge lines and the impact these factors have on overall system performance.  In the world of hydraulic power packs, hydraulic tools and hydraulically driven submersible pumps, the same factors must be considered to insure that enough energy is being efficiently transferred through the power unit and on down to the hydraulic motor powering the tool or submersible pump.

Each size of hydraulic hose has limitations when it comes to how much flow can be pushed through the Inside Diameter (ID) without adversely affecting both working pressure on the input side and back pressure on the return side of the system.  So, choosing the right diameter hose is critical for eliminating inefficiencies which result in heat generation and excess back pressure in the motor.

The general rule for velocity in a pressure line is 10-20 feet per second and on the return side it should be between five and ten feet per second.  The use of different ID hoses will alter this velocity, and the right size hose will insure that your system runs efficiently.  This can be the case whether you are running 50 feet or 500 feet of hydraulic line out to the tool or submersed pump.   The link below provides an industry standard reference to hose selection as it relates to velocity.

http://www.hydraulichose-fittings.com/images/hose-flow-velocity-chart.jpg

As mentioned above, the size and length of the hose run could also create an adverse impact on both the high pressure fluid delivery and the system back pressure.  In fact, the hose size can have a greater effect on the tool performance even if the velocity of the fluid is within range.

For example, if a power unit is outputting 8gpm at 2500psi and you are using ½” (-8) hydraulic hose for delivery, the pressure loss across a 50 foot run is 33psi and the velocity of the fluid is 13f/s (ideal).  If you add hose to a length of 150 feet the psi loss jumps to 99psi while the velocity remains the same.  And, if the one way hose length increases to 300 feet, the pressure loss jumps to 300psi with the same 13f/s velocity.  So at 300 feet out, the system pressure drops by over ten percent and the added friction also builds harmful heat which will eventually damage the critical hydraulic components as the oil quality degrades.  And of course the performance of the tool or pump will drop off by at least the same percentage.

Not using the right size hose on the return side does not result in a pressure loss, rather it creates a pressure build.  This increase in back pressure, when not controlled, can lead to failure of the lip seal in the hydraulic motor which can lead to mechanical seal failure and possibly a loss of system hydraulic oil in to the material being pumped.  Before providing some sample numbers, consider that any lip seal in a hydraulic motor is typically rated for 100psi.  With that in mind, using the same inputs as above (8gpm at 2500psi), and the same starting length of 50 feet of ½”ID hose, the system back pressure would be 33 psi at 13 f/s (the system pressure of 2500psi has already been expended doing the work).  Moving to 150 feet of return hose jumps the back pressure to 99psi or the limit of most lip seals, and a 300 foot hose run results in back pressure of nearly 200psi.

In both cases above, up-sizing the hydraulic hose one size to 5/8” (-10) has a dramatically positive effect on system pressures.  On the input side, the pressure loss of 300psi drops down to 67psi and on the return side, the back pressure drops to the same 67psi.  These new pressures realized are dramatically better and will help insure that your system runs more efficiently.

The other thing to consider as you set up the hydraulic lines is the number of quick disconnects or other connections across the length of the run.  It is always better to have fewer connections as each junction creates friction which impacts both delivery and back pressure.

Taking the time to think about the hoses and making sure to choose the right hose will go a long way towards insuring that your hydraulic system runs efficient and trouble free.

Make it hard…..Make it last

"
Weight
Height
Diameter
Discharge
Inlet Flange
Solid Handling
Hose Ports
Pump Body
Impeller/Screw
Suction Case
Elastometers
Hydraulic Oil
Input Flow
Operating Pressure
Power Source
Engine
Horse Power
Hydraulic Output
Oil Filtration
Oil Reservoir Capacity
Fuel Tank Capacity
Fuel Consumption
Dimensions
full specs

Now that we got your attention, let’s explain what we are talking about.  Hydra-Tech’s submersible pumps include several wear parts in the body of the pump that can be replaced should they get worn out.  The internal wear parts in the 3 and 4 inch sludge and slurry pumps, and 4 and 6 inch vortex flow trash pumps have a few common parts, the wear ring, wear plate and vortex impeller that are interchangeable.  To lengthen the life span of these wear parts, they are now available with a carbide coating Shieldzall, which Hydra-Tech gets from a company called Oliver Carbide Products*.  This coating provides a cost effective solution to the everyday wear and tear along with the harsh abrasive environments that our submersible pumps are used for.  Some of these challenging applications include pumping driller’s mud, mine slag, dredge work, stones and rocks of all sizes and of course abrasive sand.  A common statement Hydra-Tech hears from the end user is if you can get these harsh types of material into the inlet of the pump and then get that pumpage through the volute then the pump is a success.

Hydra-Tech did a case study with one of their customers.  The customer was using a 6 inch trash pump in a mine and after 8 hours the impeller and wear ring were worn down. Hydra-Tech then supplied them with the Shieldzall carbide coated wear ring, wear plate and impeller, and had them run the pump to see when the parts would get worn out.  With these coated parts they were able to get 280-hours out of one set, after that amount of time the wear ring was the only part that needed to be replaced.

*Oliver Corporation is the world premier manufacturer of tools and specialty coatings utilizing nickel-brazed carbide coatings.

New Employee – Celebrating 1 Year!

"
Weight
Height
Diameter
Discharge
Inlet Flange
Solid Handling
Hose Ports
Pump Body
Impeller/Screw
Suction Case
Elastometers
Hydraulic Oil
Input Flow
Operating Pressure
Power Source
Engine
Horse Power
Hydraulic Output
Oil Filtration
Oil Reservoir Capacity
Fuel Tank Capacity
Fuel Consumption
Dimensions
full specs

Just over a year ago Jeff Whittaker started working for Hydra-Tech Pumps. He knew most of the employees fairly well since most had been working for Hydra-Tech since the company moved to Nesquehoning PA in 2007. Jeff’s family acquired the business in 2005 when it was located in Mt Holly NJ.

From Jeff’s perspective, his first year:

As I sat at a desk that I made my home in my first week at Hydra-Tech, part of what I did was eavesdrop. Seriously. What better way to begin to figure out the culture and hear the Hydra-Tech end of technical calls, application calls, sales calls etc. I heard people stressing our great customer service, and I began to see it myself. In my first back order meeting where we review the orders in house, the production plan and the shipping schedule, I realized that it was a symphony of friendly ribbing, but that everyone was pushing each other to get the orders out as quickly as possible and do whatever was possible to do better than the customer expected.

On a daily basis I saw firsthand how hard Hydra-Tech’s employees work for the customer and how dedicated everyone is about their role in the whole process. It was also immediately obvious to me that Ken Reim, who founded the company back in 1977, is as passionate about the design of pumps and power units as he ever was. There is nothing he likes more than a new application and challenge.

So with a year under my belt (and a still a lot to learn) I realize that our customer service is one of our most important aspects, something that has been confirmed time after time with customers I have spoken to. So as much as we are selling hydraulically driven submersible pumps and hydraulic power units, we are also providing solutions to pumping needs and working hard for your business every day.

Manufacturer of the Year

"
Weight
Height
Diameter
Discharge
Inlet Flange
Solid Handling
Hose Ports
Pump Body
Impeller/Screw
Suction Case
Elastometers
Hydraulic Oil
Input Flow
Operating Pressure
Power Source
Engine
Horse Power
Hydraulic Output
Oil Filtration
Oil Reservoir Capacity
Fuel Tank Capacity
Fuel Consumption
Dimensions
full specs

awardManufacturer of the Year – Hydra-Tech Pumps, proudly recognizes the efforts of all of its employees for the contributions made which have enabled us to be recognized as the Manufacturer of the Year by Gorman-Rupp Pumps.  The award comes to us as a long time GR vendor and participant in the Supplier Scorecard evaluation program that Gorman Rupp has been using since 2006.

Pre-dating the Supplier Scorecard, Hydra-Tech’s relationship with GR goes back to the mid 90’s.   During that time period Gorman-Rupp recognized that Hydra-Tech’s USA made products offered both the best value and the best technology in the world of submersible pumps driven by hydraulic power.  With that in mind, they invited Ken and his partner to Mansfield, Ohio to help create the right product offerings for our joint customers.  After some brief negotiation, a handshake deal was done, and Gorman’s hydraulically driven submersible pump and hydraulic power unit program was born.  While G-R’s line of hydraulics are limited to three, four and six inch pumps along with the compatible power units, Hydra-Tech’s product line has grown to include pumps from two inch discharge up to 24” axial flow pumps.

The GR hydraulic product line is manufactured in Pennsylvania by Hydra-Tech and in accordance with G-R’s quality standards.  The equipment is private labeled and carries to market the distinct Gorman Rupp color scheme.

In addition to the standard products, GR and HT have partnered on some custom projects, including sound attenuated auto-start systems employed in western Canada, small auto-start diesel packages in use in Mexico City and a pneumatically activated auto start system for use in a permanent industrial setting.

We thank Gorman Rupp for the honor and want all of our client companies to understand that we work each and every day to be the Manufacture of the Year for each and every one of our valued customers.

Hydraulic vs Electric Submersible Pumps – The Hydra-Tech Advantage!

"
Weight
Height
Diameter
Discharge
Inlet Flange
Solid Handling
Hose Ports
Pump Body
Impeller/Screw
Suction Case
Elastometers
Hydraulic Oil
Input Flow
Operating Pressure
Power Source
Engine
Horse Power
Hydraulic Output
Oil Filtration
Oil Reservoir Capacity
Fuel Tank Capacity
Fuel Consumption
Dimensions
full specs

Comparing Electric Submersible Pump with Generator and Hydraulic Submersible Pump Systems.

Electric Submersible with Generator:

  • Submersible pump is not affected by suction lift limitations
  • Generator must run at constant full speed at all times
  • Fuel usage is high regardless of demand on pump
  • May be unsafe to operate in certain areas
  • Potential shock hazard
  • Costly to repair

Hydraulic Submersible: (from Hydra-Tech Pumps)

  • Submersible pump is NOT affected by suction lift limitations
  • Variable pump speed to suit job conditions
  • High overall efficiency and low fuel consumption
  • Can be used in hazardous environments
  • Many different pumps can be driven from a single power unit
  • Pump and power unit are field serviceable
  • Easy and inexpensive to maintain

Time is Money!

"
Weight
Height
Diameter
Discharge
Inlet Flange
Solid Handling
Hose Ports
Pump Body
Impeller/Screw
Suction Case
Elastometers
Hydraulic Oil
Input Flow
Operating Pressure
Power Source
Engine
Horse Power
Hydraulic Output
Oil Filtration
Oil Reservoir Capacity
Fuel Tank Capacity
Fuel Consumption
Dimensions
full specs

Here we are ready to go to work laying a foundation at the bottom of the 40 ft. deep excavation. We are keeping ahead of the incoming groundwater with our electric submersible pump connected to the local electric supply when suddenly the power goes out! No problem. We run over to our backup diesel self-priming pump and start it up. What? Why isn’t it pumping?!!

Oh, that’s right. The dig was deeper than we anticipated and this type of pump can’t lift the water that high. Now our only choice is to stop everything and try to lower the pump into the hole until it can catch prime and hope it can keep up until we find a better way. Tic-Toc, Tic-Toc…as time and money passes by.

Wish we had used a hydraulic submersible to begin with.

What happened to my Motor Lip Seal?

"
Weight
Height
Diameter
Discharge
Inlet Flange
Solid Handling
Hose Ports
Pump Body
Impeller/Screw
Suction Case
Elastometers
Hydraulic Oil
Input Flow
Operating Pressure
Power Source
Engine
Horse Power
Hydraulic Output
Oil Filtration
Oil Reservoir Capacity
Fuel Tank Capacity
Fuel Consumption
Dimensions
full specs

My Submersible Hydraulic pump has a blown motor lip seal, what’s the cause of this?

Seal failure on the hydraulic motor is usually caused by excess pressure build-up in the motor casing.

Some other common causes:

  1. Not connecting the quick disconnect fitting completely on the wing style fittings.
  2. Hooking up the pressure line before the return line causing the pressure in the hose to build up with no place to go except past the motor lip seal and mechanical seal and into the pumpage.
  3. Disconnecting the return line before the pressure line causing the same as above, no outlet for the pressure.   **The motor lip seal is not designed to hold the full system pressure only internal leak oil for lubrication.**
  4. The return hose might be too long and/or diameter might be too small.
  5. Clogged return hose or coupling obstructing the return of oil flow back to the tank.
  6. Power unit, Bobcat, Truck, or Excavator hydraulic controls may not be an OPEN CENTER or motor control spool meaning the return is closed off and traps the pressure at the motor.
  7. The power unit is putting out too much pressure and hydraulic flow for the motor.
  8. Running the motor at full speed in cold weather without allowing the hydraulic oil to warm up first.

*Always be aware of your max hydraulic motor pressure and flow requirements.

*Before you hook up your power unit know what your power unit’s output is to prevent bodily damage and equipment failure.

We have a solution for solids handling

"
Weight
Height
Diameter
Discharge
Inlet Flange
Solid Handling
Hose Ports
Pump Body
Impeller/Screw
Suction Case
Elastometers
Hydraulic Oil
Input Flow
Operating Pressure
Power Source
Engine
Horse Power
Hydraulic Output
Oil Filtration
Oil Reservoir Capacity
Fuel Tank Capacity
Fuel Consumption
Dimensions
full specs

Vortex Impeller Pumps Solve Solids Handling Challenges.

Think about how effective the average toilet is…It creates a vortex action using water flow and pressure to quickly and efficiently dispose of human waste, sanitary products and the occasional dead goldfish.  The vortex energy found in the common toilet is the same kind of energy which makes our vortex impeller pumps perfect for handling stringy materials, rags, slurry and many types of solids and semi-solids.

Consider also, that engine driven hydraulics powering a motor atop our submersible pumps magnify this vortex effect, creating an even more effective pumping system.  Using any vortex type impeller submersible pump will help eliminate the clogging which sometimes occurs in channel impeller pumps.  In addition our vortex pumps do well when pumping sludge, sewage, silt and even the occasional goldfish.

Why use open center pump circuits?

"
Weight
Height
Diameter
Discharge
Inlet Flange
Solid Handling
Hose Ports
Pump Body
Impeller/Screw
Suction Case
Elastometers
Hydraulic Oil
Input Flow
Operating Pressure
Power Source
Engine
Horse Power
Hydraulic Output
Oil Filtration
Oil Reservoir Capacity
Fuel Tank Capacity
Fuel Consumption
Dimensions
full specs

A popular question we are asked is “Why do you need to use an open center hydraulic circuit when driving a submersible pump?” The quick answer is to keep the pump from coming to an abrupt sudden stop.

Let’s think of it in terms of driving a car.  You are driving your car and the traffic light turns yellow and then red.  You apply the brakes just enough to slow the car to a stop.  Imagine what it would be like if you had to slam on the brakes or jam the transmission into ‘Park’ every time you needed to stop.  Both you and the car would experience excessive wear and tear.  A closed center hydraulic system acts the same way when driving anything with a hydraulic motor, especially driving a pump.

1.) In a closed center circuit, the valve controlling the direction of oil on the submersible is placed in the center (off) position, the oil returning from the submersible pump is blocked and has nowhere to go.  The pump impeller goes from spinning fast to an abrupt halt.  This can cause damage to the pump and cause motor seal failure.

2.) In an open center circuit, the valve controlling the direction of oil on the submersible pump is allowed to pass through the valve and return to the oil reservoir and allows the pump impeller to slowly wind down.  See this link for a hydraulic diagram that shows a typical open center hydraulic circuit.  

All of Hydra-Tech’s standard power units are single direction open center systems that provide safe hydraulic power matched to the pumps they drive.  If it is impractical to change the existing hydraulic circuit on the power unit or vehicle you are using to drive a submersible pump, there is another solution.  The Hydra-Tech Pump can be used between the power source and the submersible pump to prevent sudden stops, wrong rotation or over-speeding and allow you to control the pump output.

Hydraulic Hoses and Case Drains

"
Weight
Height
Diameter
Discharge
Inlet Flange
Solid Handling
Hose Ports
Pump Body
Impeller/Screw
Suction Case
Elastometers
Hydraulic Oil
Input Flow
Operating Pressure
Power Source
Engine
Horse Power
Hydraulic Output
Oil Filtration
Oil Reservoir Capacity
Fuel Tank Capacity
Fuel Consumption
Dimensions
full specs

Two factors must be used to determine the maximum length of hydraulic hose you can run from the hydraulic power unit to the submersible pump.

On the pressure side friction losses in the hose and couplings will reduce the amount of pressure available to the hydraulic motor.  This will cause a reduction in power from the motor and may have an effect on the submersible pump output.

On the return side friction losses not only will effect performance but also create excess backpressure that can damage the hydraulic motor and possibly cause seal failure in the motor.

As a rule of thumb we recommend going to a larger return hose on running distances greater than 150ft (45m).  Use a larger hose on the pressure side on distance over 150 ft (45m).

Case drain lines (third lines) are used to relieve any excess pressure build-up in the hydraulic motor casing on the submersible pump.  The larger the hydraulic flow capacity of the system, the greater the need for case drain lines.  All of Hydra-Tech’s power units 25HP (15GPM) and above have provisions for case drain lines to be fitted.  All of Hydra-Tech’s pumps that operate with input flows over 35 GPM (132LPM) have case drain lines fitted as standard.  Pumps that operate with flows from 15 to 35 GPM only require case drain lines when you are using 150 ft. (45m) or more hydraulic hose from the power unit to the pump.  Units under 15 GPM (57LPM) normally do not require case drain lines and in applications over 150 ft from the power unit to the pump, a larger size return line can be used to reduce back pressure.

Penny for your thought, Eh?

"
Weight
Height
Diameter
Discharge
Inlet Flange
Solid Handling
Hose Ports
Pump Body
Impeller/Screw
Suction Case
Elastometers
Hydraulic Oil
Input Flow
Operating Pressure
Power Source
Engine
Horse Power
Hydraulic Output
Oil Filtration
Oil Reservoir Capacity
Fuel Tank Capacity
Fuel Consumption
Dimensions
full specs

Gas & Oil Expo, 2013 – Spent a couple days touring the Expo in Calgary Alberta.  The show featured a lot of environmental services companies, several consulting and engineering firms, a good representation of construction and pre-fabbed structure companies and a large collection of safety equipment manufacturers and  suppliers.

On the pump side, there were several companies , but not much in the way of electric or hydraulic drive submersibles.  Positive displacement pumps were well represented as were chemical injection pumps and a few centriugal pump companies.  Expect to see a larger contingent of pump companies at the Oil Sands Conference this fall in Fort McMurray.

Saving the planet one pump at a time

"
Weight
Height
Diameter
Discharge
Inlet Flange
Solid Handling
Hose Ports
Pump Body
Impeller/Screw
Suction Case
Elastometers
Hydraulic Oil
Input Flow
Operating Pressure
Power Source
Engine
Horse Power
Hydraulic Output
Oil Filtration
Oil Reservoir Capacity
Fuel Tank Capacity
Fuel Consumption
Dimensions
full specs

The Carbon Footprint created by all pumping systems are a not so hidden cost associated with any pumping job.  When comparing electric drive submersible pump systems to hydraulic drive packages, you might be surprised to learn that the overall efficiency of hydrualic drive systems means less fuel comsumption and less CO2 emissions than like-sized generator or electric grid based pumps.  You can make some comparisons of your own using our independently commissioned Carbon Footprint calculator found on the landing page of our website.

Putting the calculator to the test

"
Weight
Height
Diameter
Discharge
Inlet Flange
Solid Handling
Hose Ports
Pump Body
Impeller/Screw
Suction Case
Elastometers
Hydraulic Oil
Input Flow
Operating Pressure
Power Source
Engine
Horse Power
Hydraulic Output
Oil Filtration
Oil Reservoir Capacity
Fuel Tank Capacity
Fuel Consumption
Dimensions
full specs

Vicosity and its affect on pump performance is often difficult to estimate.  Since most pump curves are based on water, understanding true system outputs when pumping thicker materials tend to be based on practical experience rather than hard data.

To get more accurate data, we at Hydra-Tech plan on investing significant resources to put four or more of our pumps through a weeklong series of test at a nationally recognized test facility.  Following those tests, we will compare our actual results to the performance figures predicted by several of the online viscosity correction calculators….Stay tuned for more details!

Caution…when selecting a type of oil

"
Weight
Height
Diameter
Discharge
Inlet Flange
Solid Handling
Hose Ports
Pump Body
Impeller/Screw
Suction Case
Elastometers
Hydraulic Oil
Input Flow
Operating Pressure
Power Source
Engine
Horse Power
Hydraulic Output
Oil Filtration
Oil Reservoir Capacity
Fuel Tank Capacity
Fuel Consumption
Dimensions
full specs

Elastomers and Bio-Degradable Hydraulic Oil- The environmental benefits of using zinc-free and/or other types of bio-oil  are significant. There are some “no-sheen” products out there  which are especially attractive for use when working in sensitive areas.

Just a word of caution when selecting which oil might be best for your situation…Check the chemical compatibility of the elastomers in your O-rings and seal components; some of these bio-oils can aggressively attack certain types of seal and O-ring materials.

Help! It’s broken but it can be fixed.

"
Weight
Height
Diameter
Discharge
Inlet Flange
Solid Handling
Hose Ports
Pump Body
Impeller/Screw
Suction Case
Elastometers
Hydraulic Oil
Input Flow
Operating Pressure
Power Source
Engine
Horse Power
Hydraulic Output
Oil Filtration
Oil Reservoir Capacity
Fuel Tank Capacity
Fuel Consumption
Dimensions
full specs

Nothing is more aggravating than having an equipment breakdown on a job site.  Even more irritating is finding out the unit can’t be repaired on-site and has to be taken back to the shop for repairs.

Electric submersible pumps and electric generators are notorious for this and in most cases cannot be repaired on-site.

With that in mind, Hydra-Tech has engineered simplicity into  pump designs that allow for field serviceable repairs.

Some examples are:

  1. Hydraulic motors that can be changed out in minutes.
  2. Pump bodies that separate quickly with a few simple hand tools.
  3. Hydraulic hoses that are interchangeable and can be switched out easily.
  4. Easy access to service points, filters and components on power units.
  5. Customer tech support services that will help diagnose any issues that may arise and quickly determine the best way to solve them.  Many times a simple fix is all that’s needed and your staff can have the unit back on-line without needing specially trained technicians.

Keeping things COOL will prolong your hydraulic units life.

"
Weight
Height
Diameter
Discharge
Inlet Flange
Solid Handling
Hose Ports
Pump Body
Impeller/Screw
Suction Case
Elastometers
Hydraulic Oil
Input Flow
Operating Pressure
Power Source
Engine
Horse Power
Hydraulic Output
Oil Filtration
Oil Reservoir Capacity
Fuel Tank Capacity
Fuel Consumption
Dimensions
full specs

Efficiency and Effectiveness – How watching the Pressure Gauge, Tightening connections and keeping things “cool “will prolong the life of any hydraulic system.

Our engine or motor based hydraulic power units convert fossil fuels or electricity in to hydraulic flow and pressure which does the useful work of powering the rotation of the impeller in our submersible pumps or any other device fitted with a hydraulic motor.

As with any energy creator, system components which don’t help with doing work, hurt by creating heat. So, to insure the most efficient use of the primary fuel, careful attention must be paid to all of the components of the hydraulic system and how each hydraulic pump, motor, valve, fitting and piece of plumbing create inefficiencies by generating heat.

Once the design is done and the user puts the whole system to work, the two best ways to keep things cool are: making sure the hydraulic connections at the hoses and submersible pump are fully seated and only running the engine speed up to the point where the hydraulic system pressure shown on the pressure gauge is no longer climbing. When the pressure on the gauge stops increasing, this means that the system is doing all of the work it can do given the pumping conditions. Increasing engine rpm beyond this point does more harm than good. Specifically, running engine speed up beyond the pressure “sweet spot” does nothing for system effectiveness (no more work gets done) and wastes expensive fuel. In addition, efficiency is hurt because the excess hydraulic flow resulting from the engine mounted hydraulic pump turning faster dumps over the small orifices in the relief valve which in turn creates nothing but HEAT. This heat breaks down the hydraulic oil, creates blow by and generally does bad things to all the critical system pieces.

In the end taking two simple steps, keeping your eye on the pressure gauge and making sure things are tight will always result in a more efficient and effective pumping system.

Quietly supporting our Armed Forces

"
Weight
Height
Diameter
Discharge
Inlet Flange
Solid Handling
Hose Ports
Pump Body
Impeller/Screw
Suction Case
Elastometers
Hydraulic Oil
Input Flow
Operating Pressure
Power Source
Engine
Horse Power
Hydraulic Output
Oil Filtration
Oil Reservoir Capacity
Fuel Tank Capacity
Fuel Consumption
Dimensions
full specs

Tested, approved and deployed by a purchasing arm of the military, Hydra-Tech’s HT50DQV powers submersible pumps for salvage operations and hydraulic power for dive projects. Like all Hydra-Tech sound attenuated packages, these units are perfect for residential areas and other noise sensitive locations.

9 different impeller types

"
Weight
Height
Diameter
Discharge
Inlet Flange
Solid Handling
Hose Ports
Pump Body
Impeller/Screw
Suction Case
Elastometers
Hydraulic Oil
Input Flow
Operating Pressure
Power Source
Engine
Horse Power
Hydraulic Output
Oil Filtration
Oil Reservoir Capacity
Fuel Tank Capacity
Fuel Consumption
Dimensions
full specs

Centrifugal and Submersible Pumps have one thing in common, there is no one size or type that fits all applications. Different impeller and pump body styles are required to do different jobs. Here are some of the different impeller types and what they are used for:

1) High Head Closed Channel Impeller – high-efficiency design for pumping water and other liquids at higher head pressures

2) Vortex Impeller – Used for pumping stringy solids and debris-laden liquids

3) Centrifugal Screw Impeller – Used for pumping oils and other viscous liquids

4) Propeller – Used for pumping high volumes of water at low heads

5) Shredder Impeller – Used for chopping solids to smaller pieces when they enter the pump

6) Closed Channel Impeller – Used for pumping sewage and wastewater

7) Mixed Flow Impeller – Used for high volume water pumping at low to medium heads

8) Semi-Open Impeller – Used for trash and debris laden liquids

9) Hardened Sand/Slurry Impeller – Used for pumping abrasive liquids

Why is there a hole in my bolt?

"
Weight
Height
Diameter
Discharge
Inlet Flange
Solid Handling
Hose Ports
Pump Body
Impeller/Screw
Suction Case
Elastometers
Hydraulic Oil
Input Flow
Operating Pressure
Power Source
Engine
Horse Power
Hydraulic Output
Oil Filtration
Oil Reservoir Capacity
Fuel Tank Capacity
Fuel Consumption
Dimensions
full specs

A common question asked by Hydra-Tech customers is:

Why is there a small stream of water flowing from the top cover of my pump?

There is a logical answer to this, and it is not that the pump is broken. Hydra-Tech Pumps manufactures one (1) of the four (4) bolts used to hold the water plate in place. This bolt has a 1/8″ hole through the center of it. The purpose is to allow trapped air to escape from the volute (pump body) when placing the pump into the liquid for the first time.

Maintenance: If this hole gets clogged, you simply just push a pick through the hole to clean out the dried up debris.

Curves, we’ve got them!

"
Weight
Height
Diameter
Discharge
Inlet Flange
Solid Handling
Hose Ports
Pump Body
Impeller/Screw
Suction Case
Elastometers
Hydraulic Oil
Input Flow
Operating Pressure
Power Source
Engine
Horse Power
Hydraulic Output
Oil Filtration
Oil Reservoir Capacity
Fuel Tank Capacity
Fuel Consumption
Dimensions
full specs

Pumps are mechanical devices used to move a liquid from one place to another. On the most basic level, without allowing for friction losses, the difference in altitude from place A to place B is called the pump head requirement. It is measured in linear units such as feet or meters. The flow of the pump is measured in volumes per unit time, such liters per minute or US gallons per minute. The pump curve shows the relationship between these two measurements.

Here is an example of a curve and how to interpret it.

curve
Head– height of liquid column is on the y-axis or vertical axis

We calculate feet of head to see how much pressure (psi=feet of head /2.31) the pump must overcome to deliver the resulting output flow at the delivery point.

Capacity– volume of liquid, is on the x-axis or horizontal axis

**Make sure you take notice to the unit of measure each one is being measured in. **

This point is showing this particular pump can supply 210 GPM @ 45 feet of head

You will notice each line is labeled from A-D, this is showing the different hydraulic inputs needed to make the pump run at the different levels of efficiency.

For example, in order to get your pump to pump 75 GPM @ 50 feet of head you would need a hydraulic unit able to provide 6 GPM @ 1500-2100 PSI, which you can find at Hydra-Tech Pumps with their HT13G portable hydraulic power unit.

*The maximum shutoff head (where all flow stops) of this pump is 75 feet. The best efficiency point of the pump would be about 85% of the maximum shutoff head. So at 64 feet the pump would be running most efficiently.

Which discharge hose is right for me?

"
Weight
Height
Diameter
Discharge
Inlet Flange
Solid Handling
Hose Ports
Pump Body
Impeller/Screw
Suction Case
Elastometers
Hydraulic Oil
Input Flow
Operating Pressure
Power Source
Engine
Horse Power
Hydraulic Output
Oil Filtration
Oil Reservoir Capacity
Fuel Tank Capacity
Fuel Consumption
Dimensions
full specs

Often overlooked when evaluating or calculating pump performance is the role of discharge hose. If you are using hose rather than pipe, the type of hose selected can and does have a major impact on pump output and is a common reason for pump system under-performance. When choosing a type of discharge hose, you should consider more than just the price point.

So when asking what’s best for my application, consider that the most common options in hose (listed from lowest cost to highest) are lay flat, rubber, reinforced rubber and wire reinforced vinyl. These options, as with many things, hold true to the old saying, “you get what you pay for.”

Specifically, the lower cost lay flat and non-reinforced rubber hose create additional head pressure as the pumps must work against the actual head and also work to keep the discharge hose expanded while both starting and pumping. While not good for all jobs, this type of hose can be effective for lower head, short horizontal run-out applications, where there is not a lot of total head to overcome. The other thing to consider when thinking about lay flat hose is the question of durability. It is easily the most sensitive when it comes to abrasion and puncture, and in severe conditions, lay flat can quickly turn in to a sprinkler hose. Non-reinforced rubber is much more durable than lay flat. However, with any non-reinforced hose, kinking and the resulting discharge line obstruction can often occur.

As I am sure you figured out by now, either type of reinforced hose will eliminate the false head created by the collapsing hoses and as a result the impact on system performance will be minimized.. So when choosing between the reinforced rubber and wire reinforced vinyl, you should think about things like flexibility and weight. The vinyl product is almost always lighter with a better bend radius, but can also be a bit pricier than the reinforced rubber. The rubber on the other hand typically is more abrasion and puncture resistant.
To sum up, the same discharge hose is not right for every job. Consider all of the job conditions and choose the hose which create the best mix of optimal system performance, durability and cost minimization.

Pump Efficiency vs Practicality

"
Weight
Height
Diameter
Discharge
Inlet Flange
Solid Handling
Hose Ports
Pump Body
Impeller/Screw
Suction Case
Elastometers
Hydraulic Oil
Input Flow
Operating Pressure
Power Source
Engine
Horse Power
Hydraulic Output
Oil Filtration
Oil Reservoir Capacity
Fuel Tank Capacity
Fuel Consumption
Dimensions
full specs

In this world where we all strive to save energy and develop products that will do just that we also have to be aware of the trade offs that can come with it. In the pump world it means making pumps that can achieve the highest efficiency and use less power to drive them. An example would be a water pump running 24 hours a day in a cooling system at a plant. The difference in the cost of electric power consumed by a pump that is 50% efficient versus one that is 75% efficient could be huge and over time the more efficient pump pays for itself in the energy saved. This would be great if we only pumped clear water all the time.

In the real world we are confronted with many pumping challenges. The liquids may contain solids, which can be heavy or viscous, stringy, abrasive and may even need to be chopped or agitated in order to flow properly. What good is a high efficiency water pump when it becomes clogged with solids and stops pumping?

This is why there are so many different types of pumps designed for specific tasks. While pump manufacturers always want to build pumps that are efficient, making sure the pump does the job is the first priority. When that tank full of waste material has to be moved or that lake needs to be dredged or that sewer needs to be by-passed while repairs take place, using pumps that are practical for the job become more important than the efficiency of the pump.